A+ Pages:4 Words:915
This is just a sample.
To get a unique essay
Hire Writer
Type of paper: Essay
University/College: University of California
Download: .pdf, .docx, .epub, .txt

A limited time offer!

Get custom essay sample written according to your requirements

Urgent 3h delivery guaranteed

Order Now

The Big Data

In my opinion, there will be a huge business transition in organizations and the way business functions with the more and more generation of data every day. There has been massive increase in the way data is being used and is getting difficult to manage data. It is very important to get proper insights as it controls the influence of big data analytics to inform key strategic decisions.

We will write a custom essay sample on The Big Data specifically for you
for only $13.90/page
Order Now

The big data provides competitive advantage to the businesses in terms of decision taking process. Big data analytics helps in taking important decisions as they make it more agile and responsive.

With increasing digitization in the world, businesses now have too much data generated every day. With this increasing data it is very difficult to manage this data and get proper insights from this data. Simply bigger the data, harder the analytical process becomes. As big data doesn’t really mean only the collection of data or just having the information, it also includes all the processes and tools that help in the analysis of this big data and the results derived from it.

The biggest advantage if big data is that it can be applied to time fraud detection, complex competitive analysis, call center optimization, consumer sentiment analysis, intelligent traffic management, and to manage smart power grids. Big data is characterized by three primary factors:

  • Volume (quantity over quality);
  • Velocity (too much generation of data every day);
  • Variety (different types of data).

Following are the four types of Big Data BI that affects a business:

  1. Prescriptive Analytics refers to the rules and recommendations for the following steps to be taken.
  2. Predictive Analytics help in analyzing the data and help in knowing what might happen and derive what steps can be taken.
  3. Diagnostic Analytics is usually to analyze the past data and what happened, why it happened. This is to understand how the analysis will help in making the dashboard easier to understand.
  4. Descriptive Analytics will in knowing what is happening now based on incoming data. It uses the real time data and dashboard in order to carry out analysis.

With the big data, along with a lot of benefits, the decision-making process faces a lot of challenges. According to me below are the pros and cons of using big data in the decision-making process.

Advantages of Big Data in Decision-Making

  • It helps in gaining the market advantage
  • It helps in building trust with clients
  • As the speed of collection is often too fast, the decisions can be taken at a faster pace

Disadvantages of Big Data in Decision-Making

  •  There is a higher chance of analyzing and taking decision for the inaccurate data.
  • Time and money will be wasted if the decisions are taken for the inaccurate data.
  • Decision making with Big Data requires a lot of talented people to work it in our favor. Mistake in one step would lead to iterating of entire  process making it time consuming.
  •  In addition to that, there are always cybersecurity risk which can manipulate the decisions when it comes to data.

Taking example of the Amazon, it has been rightly using big data in all its benefits and has become the biggest ecommerce giant in the world. These are the perks of using big data analytics in the right way. Amazon is the perfect example to understand how big data can work in your favor and help you achieve the market that you are targeting.
Therefore, taking the example of Amazon, it entered the Chinese market without any analysis of the data or without any knowledge of the market. It failed miserably in the market and had to undergo losses. Few years later, it decided to enter Indian market and be its biggest ecommerce retailer. Now, before entering the Indian market, Amazon decided to analyze its mistakes that it made while entering the Chinese market.
Amazon used the diagnostic analysis of the big data to understand its failure in the Chinese market and was able to create the dashboard describing the factors that led to failure. Those factors were:

  • did not get enough support from the customers
  • could not stand the local competition of Alibaba (local Chinese e-commerce)
  • did not get enough support from the Chinese government

Amazon did not only analyze the Chinese market, but it also undergoes descriptive, prescriptive and predictive analysis for the Indian market before entering it and created a well-versed dashboard.

Thus, these three factors play an important for any company entering a foreign country. Here that is what Amazon did and I also as a decision maker would have done the same thing as analyzing these three things which made Amazon fail in Chinese market, can actually help it succeed in Indian market. Moreover, in addition to that, there are so many startups in India which needs a boost and needs investment unlike the case in China. So, Indian market has availability of low-cost technical efficiency which helps in avoiding huge costs of outsourcing.

Not only that, Indian consumers are always fascinated by these new changes and are always welcoming to more convenient options if available. So, choosing startups rather than outsourcing and making convenience of customer first priority would help in Amazon succeeding the Indian market.

Thus, from the example of Amazon, we can conclude that Big Data analytics help in making the process of decision-making smoother and more responsive. It provides a competitive edge by making the analyzing much easier and that too in a minimal time making the process very optimum.