Weathering and Erosion

Category: Atmosphere, Climate, Earth
Last Updated: 28 Jan 2021
Pages: 7 Views: 135
Weather is the state of the atmosphere at a given time and place, with respect to variables such as temperature, moisture, wind velocity, and barometric pressure. Weather can be classified as day to day temperature and precipitation activity, where climiate is average atmospheric conditions over longer periods of time. Weather occurs from temperature and moisture differences between one place and another. These differences can occur due to the sun angle at any particular spot. The strong temperature contrast between polar and tropical air gives rise to the jet stream.

Weather systems in the mid-latitudes, such as "extratropical cyclones", are caused by instabilities of the jet stream flow. Because the Earth's axis is tilted relative to its orbital plane, sunlight is pointed at different angles at different times of the year. On Earth's surface, temperatures usually range from 0-100 degrees farenheit annually. Over thousands of years, changes in Earth's orbit affect the amount and distribution of solar energy received by the Earth and influence long-term climate Surface temperature differences in turn cause pressure differences.

Higher altitudes are cooler than lower altitudes due to differences in compressional heating. Weather forecasting is the application of science and technology to predict the state of the atmosphere for a future time and a given location. The atmosphere is a chaotic system, so small changes to one part of the system can grow to have large effects on the system as a whole. Human attempts to control the weather have occurred throughout human history, and there is evidence that human activity such as agriculture and industry has inadvertently modified weather patterns.

Order custom essay Weathering and Erosion with free plagiarism report

feat icon 450+ experts on 30 subjects feat icon Starting from 3 hours delivery
Get Essay Help

Studying how the weather works on other planets has been helpful in understanding how weather works on Earth. A famous landmark in the Solar System, Jupiter's Great Red Spot, is an anticyclonic storm known to have existed for at least 300 years. However, weather is not limited to planetary bodies. A star's corona is constantly being lost to space, creating what is essentially a very thin atmosphere throughout the Solar System. The movement of mass ejected from the Sun is known as the solar wind. On Earth, common weather phenomena include wind, cloud, rain, snow, fog and dust storms.

Less common events include natural disasters such as tornadoes, hurricanes, typhoons and ice storms. Almost all familiar weather phenomena occur in the troposphere (the lower part of the atmosphere). Weather does occur in the stratosphere and can affect weather lower down in the troposphere, but the exact mechanisms are poorly understood. Weather occurs primarily due to density (temperature and moisture) differences between one place to another. These differences can occur due to the sun angle at any particular spot, which varies by latitude from the tropics.

In other words, the farther from the tropics you lie, the lower the sun angle is, which causes those locations to be cooler due to the indirect sunlight The strong temperature contrast between polar and tropical air gives rise to the jet stream. Weather systems in the mid-latitudes, such as extratropical cyclones, are caused by instabilities of the jet stream flow (see baroclinity). Weather systems in the tropics, such as monsoons or organized thunderstorm systems, are caused by different processes.

Because the Earth's axis is tilted relative to its orbital plane, sunlight is incident at different angles at different times of the year. In June the Northern Hemisphere is tilted towards the sun, so at any given Northern Hemisphere latitude sunlight falls more directly on that spot than in December (see Effect of sun angle on climate). This effect causes seasons. Over thousands to hundreds of thousands of years, changes in Earth's orbital parameters affect the amount and distribution of solar energy received by the Earth and influence long-term climate. see Milankovitch cycles). Uneven solar heating (the formation of zones of temperature and moisture gradients, or frontogenesis) can also be due to the weather itself in the form of cloudiness and precipitation. Higher altitudes are cooler than lower altitudes, which is explained by the lapse rate. On local scales, temperature differences can occur because different surfaces (such as oceans, forests, ice sheets, or man-made objects) have differing physical characteristics such as reflectivity, roughness, or moisture content.

Surface temperature differences in turn cause pressure differences. A hot surface heats the air above it and the air expands, lowering the air pressure and its density. The resulting horizontal pressure gradient accelerates the air from high to low pressure, creating wind, and Earth's rotation then causes curvature of the flow via the Coriolis effect. The simple systems thus formed can then display emergent behaviour to produce more complex systems and thus other weather phenomena. Large scale examples include the Hadley cell while a smaller scale example would be coastal breezes.

The atmosphere is a chaotic system, so small changes to one part of the system can grow to have large effects on the system as a whole. This makes it difficult to accurately predict weather more than a few days in advance, though weather forecasters are continually working to extend this limit through the scientific study of weather, meteorology. It is theoretically impossible to make useful day-to-day predictions more than about two weeks ahead, imposing an upper limit to potential for improved prediction skill.

Chaos theory says that the slightest variation in the motion of the ground can grow with time. This idea is sometimes called the butterfly effect, from the idea that the motions caused by the flapping wings of a butterfly eventually could produce marked changes in the state of the atmosphere. Because of this sensitivity to small changes, it will never be possible to make perfect forecasts. Weather has played a large and sometimes direct part in human history.

Aside from climatic changes that have caused the gradual drift of populations (for example the desertification of the Middle East, and the formation of land bridges during glacial periods), extreme weather events have caused smaller scale population movements and intruded directly in historical events. One such event is the saving of Japan from invasion by the Mongol fleet of Kublai Khan by the Kamikaze winds in 1281. French claims to Florida came to an end in 1565 when a hurricane destroyed the French fleet, allowing Spain to conquer Fort Caroline.

More recently, Hurricane Katrina redistributed over one million people from the central Gulf coast elsewhere across the United States, becoming the largest diaspora in the history of the United States. Weather forecasting is the application of science and technology to predict the state of the atmosphere for a future time and a given location. Human beings have attempted to predict the weather informally for millennia, and formally since at least the nineteenth century.

Weather forecasts are made by collecting quantitative data about the current state of the atmosphere and using scientific understanding of atmospheric processes to project how the atmosphere will evolve. Once an all-human endeavor based mainly upon changes in barometric pressure, current weather conditions, and sky condition, forecast models are now used to determine future conditions. Human input is still required to pick the best possible forecast model to base the forecast upon, which involves pattern recognition skills, teleconnections, knowledge of model performance, and knowledge of model biases.

The chaotic nature of the atmosphere, the massive computational power required to solve the equations that describe the atmosphere, error involved in measuring the initial conditions, and an incomplete understanding of atmospheric processes mean that forecasts become less accurate as the difference in current time and the time for which the forecast is being made (the range of the forecast) increases. The use of ensembles and model consensus helps to narrow the error and pick the most likely outcome. There are a variety of end users to weather forecasts.

Weather warnings are important forecasts because they are used to protect life and property. Forecasts based on temperature and precipitation are important to agriculture, and therefore to commodity traders within stock markets. Temperature forecasts are used by utility companies to estimate demand over coming days. On an everyday basis, people use weather forecasts to determine what to wear on a given day. Since outdoor activities are severely curtailed by heavy rain, snow and the wind chill, forecasts can be used to plan activities around these events, and to plan ahead and survive them.

Studying how the weather works on other planets has been seen as helpful in understanding how it works on Earth. Weather on other planets follows many of the same physical principles as weather on Earth, but occurs on different scales and in atmospheres having different chemical composition. The Cassini–Huygens mission to Titan discovered clouds formed from methane or ethane which deposit rain composed of liquid methane and other organic compounds. Earth's atmosphere includes six latitudinal circulation zones, three in each hemisphere.

In contrast, Jupiter's banded appearance shows many such zones, Titan has a single jet stream near the 50th parallel north latitude, and Venus has a single jet near the equator. Weather events influence biological processes on short time scales. For instance, as the Sun rises above the horizon in the morning, light levels become sufficient for the process of photosynthesis to take place in plant leaves. Later on, during the day, air temperature and humidity may induce the partial or total closure of the stomata, a typical response of many plants to limit the loss of water through transpiration.

More generally, the daily evolution of meteorological variables controls the circadian rhythm of plants and animals alike. Living organisms, for their part, can collectively affect weather patterns. The rate of evapotranspiration of forests, or of any large vegetated area for that matter, contributes to the release of water vapor in the atmosphere. This local, relatively fast and continuous process may contribute significantly to the persistence of precipitations in a given area.

As another example, the wilting of plants results in definite changes in leaf angle distribution and therefore modifies the rates of reflection, transmission and absorption of solar light in these plants. That, in turn, changes the albedo of the ecosystem as well as the relative importance of the sensible and latent heat fluxes from the surface to the atmosphere. For an example in oceanography, consider the release of dimethyl sulfide by biological activity in sea water and its impact on atmospheric aerosols.

Cite this Page

Weathering and Erosion. (2017, Mar 21). Retrieved from https://phdessay.com/weathering-and-erosion/

Don't let plagiarism ruin your grade

Run a free check or have your essay done for you

plagiarism ruin image

We use cookies to give you the best experience possible. By continuing we’ll assume you’re on board with our cookie policy

Save time and let our verified experts help you.

Hire writer