Modular Arithmetic

Category: Algebra, Mathematics
Last Updated: 25 May 2023
Pages: 2 Views: 589

One  can  always  say, ‘ it  is  7.00  p.m.’ and  the  same  fact  can  be  also  put  as  ‘ it is  19.00 ’. If  the  truth  underlying  these  two  statements  is  understood  well, one  has understood  ‘ modular mathematics ‘  well.

The  conventional  arithmetic  is  based  on  linear  number  system  known  as  the ‘ number  line’.  Modular  Arithemetic  was  introduced  by  Carl  Friedrich  Gauss  in  1801, in  his  book ‘ Disquisitiones  Arithmeticae’. (modular).  It  is  based  on  circle.  A  circle  can  be  divided  into  any  number  of  parts. Once  divided, each  part  can  be named  as  a  number, just  like  a  clock, which  consists  of  12  divisions  and  each division  is  numbered  progressively. Usually, the  starting  point  is  named  as ‘0’. So,the  starting  point  of  a  set  of  numbers  on  a  clock  is  ‘0’  and  not  ‘1’. Since  the divisions   are 12, all  integers, positive  or  negative, which  are  multiples  of  12, will always  be  corresponding  to  0,  on  the  clock. Hence, number  18  on  a  clock corresponds  to  18/12 . Here  the  remainder  is  6,  so  the  answer  of  13 + 5  will  be  6

Similarly, the  same  number 18, on  a  circle  with  5  divisions  will  represent  number 3, as  3  is  the  remainder  when  18  is  divided  by  5.Some  examples  of  addition  and  multiplication  with  mod  (5):

Order custom essay Modular Arithmetic with free plagiarism report

feat icon 450+ experts on 30 subjects feat icon Starting from 3 hours delivery
Get Essay Help

1)      6  +  5  = 11. Now  11/5  gives  remainder  1. Hence  the  answer  is  1.

2)      13  +  35 = 48. Now, 48/5  gives  3  as  remainder. Hence  the  answer  is  3.

3)      9  +  ( -4) = 5. Now  5/5  gives  0  as  remainder. Hence  the  answer  is  0.

4)  14  +  ( - 6 ) = 8 . Now  8/5  gives  3  as  remainder. So  the  answer  is  3.

Some examples of multiplication with mod ( 5 ).

1.      6  X  11 = 66. Now, 66/5  gives  1  as  remainder. So  the  answer  is  1.

2.      13 X 8 = 104. Now  104/5  gives  4  as  remainder . So  the  answer  is  4

3.      316 X - 2 = -632. Now, 632/5  gives  2 as  remainder. For negative

numbers  the  calculation  is  anticlockwise. So , for negative numbers, the answer  will  be  numbers  of  divisions  (mod)  divided  by  the  remainder.Here the  answer  will be 3.

4.      13 X –7 = - 91. Now, 91/5  gives 1 as remainder. But, the answer will be

5 – 1 = 4. So  the  answer  is  4.

Works-cited page

1.      Modular, Modular Arithmetic, wikipedia the free encyclopedia, 2006,

Retrieved on  19-02-07 from

< http://en.wikipedia.org/wiki/Modular_arithmetic>

2.      The entire explanation is based on a web page available at ,

< http://www.csub.edu/~ychoi2/MIS%20260/NotesJava/chap13/ch13_4.html>

Additional  information: An  automatic  calculator  of  any  type  of  operations  with  any numbers  in  modular  arithmetic  is  available  on  website:

< http://www.math.scub.edu/faculty/susan/faculty/modular/modular.html >

Cite this Page

Modular Arithmetic. (2017, Apr 17). Retrieved from https://phdessay.com/modular-arithmetic/

Don't let plagiarism ruin your grade

Run a free check or have your essay done for you

plagiarism ruin image

We use cookies to give you the best experience possible. By continuing we’ll assume you’re on board with our cookie policy

Save time and let our verified experts help you.

Hire writer