Last Updated 08 Sep 2020

About metals and minerals

Category about me
Essay type Research
Words 3178 (12 pages)
Views 635
Table of contents

Introduction

Asia plays an of import function in today's excavation industry due to important resources of assorted metals and minerals, bring forthing about a 3rd of the universe's bauxite and gold, histories for half of planetary Fe ore production, and for about 70 % of the universe's hydraulic cement. Within the part among the largest manufacturers of metals and minerals are China, India, and Indonesia. Despite the important importance of metals and minerals in the modern economic system, excavation activities far excessively frequently lead to terrible environmental debasement, put local communities under force per unit area, cause societal jobs, and sometimes go the cause of struggles. Grasberg mine in Indonesia is an expressed illustration of legion issues associated with big graduated table excavation. This paper gives a brief reappraisal of excavation in Grasberg from the construct the three pillars of sustainability, therefore analyzing economic, societal, and particularly environmental impacts of this particular mine.

Economic Impact

Don't use plagiarized sources. Get Your Custom Essay on

About metals and minerals

just from $13,9 / page

get custom paper

Due to the big graduated table of the operations, the Grasberg mine has an immense consequence on the economical state of affairs of Indonesia. Economic benefits include direct, such as revenue enhancement gross and employment and other indirect and induced economic benefits. The unfastened cavity operations are expected to go on until 2015 then the passage will be made to the full belowground production and the company is expected to be profitable until 2041, which secures these benefits to Indonesia until that clip. The company is the largest revenue enhancement remunerator in Indonesia, merely in 2004 it provided $ 3 billion and between 1992-2004, $ 33 billion direct and indirect benefits, which is 2 % of the GDP of the state and 55 % of the GDP of Irian Jaya state, where the mine is located. Along with the economical state of affairs, it besides has an immense consequence on employment. In 2008 the company had 29,300 employees and 10,700 contractors, about 18,000 people work at the mine which is operated by PT ( what is it? ) Freeport Indonesia. However, the employment impacts are more complex as the excavation activity has created societal tenseness and wellness impacts such as AIDS and malaria in footings of in-migration, transmigration, and urbanization procedures.

Besides direct effects. Indonesia benefits from the indirect economic benefits, such as new airdrome, infirmaries and roads, nevertheless these were chiefly built to back up the substructure of the mine. In add-on, the company invested in malaria control and educational aids. Induced effects include rewards, other benefits paid for the workers, purchases of goods and services, which are besides heightening economic development of the state. To decide bing societal and environmental issues the company has established a 1 % trust fund ( 1 % of the company's gross one-year gross ). Between its initiation in 1996 and 1999 it has been contributed $ 54.8 million and it is planned to go on over the following 10 old ages. In 1999, Freeport contributed the US $ 14.4 million to the fund. In contrast in the same twelvemonth the CEO of Freeport, James Robert Moffet made the US $ 41 million which is approximately three times the compensation. Sing an independent survey it has became a new beginning of troubles and struggle. To decide urbanization issues and increase gross and occupations within Papuan communities Freeport cooperates with the U.S. Agency for International Development and has launched the Papua Agribusiness Development Alliance. $ 2 million is allocated to develop agribusiness and agriculture, therefore advancing betterments in agriculture and fishing supports.

Besides official payments the company provided side payments to the authority's functionaries and spent $ 35 million on the military substructure. Harmonizing to company papers, $ 20- $ 30 million were given to the military and constabularies from 1998 to 2004. In malice of all these above-mentioned benefits and investing, the environmental debasement, societal and wellness issues remain and can ne'er be to the full compensated by the company, but are enforcing immense cost on Indonesia. The cost of lost supports ( fishing, woods, biodiversity, etc. ) and environmental harm are difficult to mensurate. Many of the wellness effects can non even be captured as they are chronic. Based on the above, Freeport Company evidently has an immense consequence on the Indonesian economic system but as it is a foreign investor it besides means that most of the gross is taken out of the state. Another chief issue is that most of its production is supplied as a Cu dressed ore for the refinery to other states worldwide depriving Indonesia of related service-based employment and induced benefits. Fortunately, due to societal and political force per unit area, governmental alterations and more demanding environmental outlooks and ordinances increase the force per unit area on Grasberg mine and easily driving the company towards more sustainable excavation patterns.

Social Impact

The social impact of Grasberg mine operation chiefly touches three major issues: demographical alterations, substructure development, and human rights misdemeanor. All of these issues address influence on the autochthonal people, Papuan folk. Some of the alterations which the Grasberg mine brought to the part could be considered as betterments in the life criterions such as substructure development. However, all of these alterations touch the inquiry of human rights maltreatments in many dimensions.  Irian Jaya, the state where Grasberg mine is situated, is singing a rapid population growth as a consequence of the resettlement policies of the Indonesian authorities. The mine was opened in 1967 when there were no roads and fewer than 1000 people inhabited this country. Over clip, the mine drew in 120 000 people from all over Indonesia and now it serves as about the lone one topographic point of employment for local people. Although the mine operation in the state has lead to infrastructure development such as edifice of roads, an airdrome, a port at Amamapare ( what is it ), a ropeway, infirmary, lodging, schools, and other installations, presents there is a batch of jobs and struggles, peculiarly, in human rights abuses around the Grasberg mine.

The enlargement of excavation caused a batch of protests among the local population because the societal impact was chiefly connected with disturbing the manner of life of autochthonal people, capturing their land, forestalling attempts to seek justness through the tribunals, bankrolling the constabulary, and coercing them to resettle. These protests were the other portion of human rights maltreatments which showed up in military intercessions, colzas, and slayings of dissenters, etc. Indonesia's National Commission on Human Rights concluded that clear and identifiable human rights misdemeanors had occurred in and around Freeport's undertaking country, including indiscriminate violent deaths, anguish, inhumane or degrading intervention, improper apprehension, arbitrary detainment, disappearing, inordinate surveillance, and devastation of belongings. The committee noted that these misdemeanors are straight connected with protection for the excavation concern of PT Freeport Indonesia. Additionally, such environmental impacts as H2O and dirt pollution are the misdemeanor of the human right to adequate criteria of life and the right to wellness. ( How to link with the old sentence? ) Local autochthonal landholders, the Kamoro and Amungme, have been the topic of coercion and bullying. Their land has been exploited, natural resources stolen and net incomes siphoned off by foreign shareholders and national elites.

Environmental Impact

The environmental impact from the excavation activity of the Grasberg mine arises chiefly due to two beginnings.

  1. Untreated chasing disposal at the Aghawagon river.
  2. Acid mine drainage from the reeling sum of waste stone generated.

Shadowings

The excavation operations at Grasberg started in 1972. Riverine disposal of untreated shadowings has been practiced since so. The IIED and WBCSD ( 2002 ) reference a 30 fold addition in the shadowings production from 1972 to 2000. As of 2002 about 230,000 dozens of shadowings are disposed of day-to-day straight from the mine into the Aghanwagon River. Fig 3 shows a satellite image of my country along with the river system through which the shadowings are disposed of. The Aghanwagon is connected with the Ajkwa river system through the Otomona river. Akwa river eventually meets the Arafura sea. A comparative analysis for selected parametric quantities with regard to mining outflowing criteria of the US-EPA and Canada Fisheries Act and the Grasberg mine wastewater ( Annex 1 ) is presented in the tabular array 1 below.

Table 1. Comparison of shadowings features

Grasberg Mine US EPA criterion Canada Fisheries Act criterions
pH 11.3 6-9 6-9.5
Sum suspended solids ( mg/l ) 558,584 20 15
As ( mg/l ) 3.94 - 0.5
Cu ( mg/l ) 536 0.15 0.3
Hg ( mg/l ) & lt ; 0.003 0.001 -

Expression at the above tabular array would do to grok the monolithic pollution load caused by the direct riverine disposal of untreated shadowings in the environing riverine ecosystem. The negative environmental impacts are chiefly manifested through the following two jobs.

Problem of deposit

The IIED and WBCSD ( 2002 ) estimation shadowings lending up to 93 % of the deposit loads in the river system. This has resulted in a change of geomorphology of the river system. Changes in the nearby river class of Pika, Uamiau, and Aimua as reported by the Indonesian Ministry of Population and Environment further reinforce this claim. Watson ( 1999 ) has estimated that less than 5 % of the entire shadowings reach the Arafura Sea. The shadowing disposals have created an unreal inundation field in the Ajkwa riverine system. Obstruction of the Ajkwa river in the mid-1990s caused unreal inundation in the river field. In response to the obstruction of the river, the company has constructed levees to lodge and incorporate shadowings in the designated inundation field of the river, termed as Ajkwa Deposition Area. The levees are 40 kilometers long, constructed on both banks of the low prevarication inundation field of the Ajkwa river. This has resulted in the devastation of 30 km2 of the rain forest by 2002, and finally, the entire loss of rain forest in the ADA has been estimated to be 230 km2. In mid-1995 an American research worker has conducted trials of river deposits at Timika, which is the nearest human colony from the mine. The consequences of these trials along with a comparing of Australia and New Zealand's National Health and Medical Research Council's ( NHMRC ) criteria for contaminated sites are presented below.

Table 2. Selected heavy metal concentration at riverine deposits in Timika

Copper ( ppm ) Zinc ( ppm ) Lead ( ppm )
Akwa river deposit 2290 53.3 1.35
( NHMRC ) guidelines for contaminated site 60 200 300

Noteworthy from the above tabular array is the inordinate sum of Copper taint. A more recent survey by Brunskill et Al ( 2004 ) has calculated the fluxes of Copper, Zinc, and Lead in the Ajkwa river basin. The present fluxes as compared to the background fluxes ( before 1950 ) from the survey are presented below.

Table 3. Fluxus of heavy metals at Ajkwa river basin

Site Cu flux ( mmol Cu m-2 yr -1 ) Zn flux ( mmol Cu m-2 yr -1 ) Pb flux ( mmol Cu m-2 yr -1 )
3 Background 3 9 0.68
Present 137 18 1.5
4 Background 7.8 16 1.3
Present 204 28 2.2
5 Background 6.6 11 1.1
Present 129 21 1.8

These consequences are peculiarly dismaying for Copper. Since the addition in the background degree is every bit high as 40 times. This study shows that this rise in flux absolutely syncs with the rise in the production degree of the mine. Sing these high flux rates of the selected metal, the concentration of these metals in the riverine deposits should be much higher now as compared to degrees indicated in Table 2.

3.1.2 Impact on H2O

The impact of shadowings disposal on the H2O quality of the Ajkwa River is terrible. Ortman and Subra ( 2000 ) conducted field trials to measure the extent of the pollution ( Annex I, table B ). This information is compared on two degrees. The first comparing has been made with regard to imbibing H2O quality against the World Health Organisation ( 2008 ) guideline values ( Table 4 ). The 2nd comparison is made with regard to toxic effects on aquatic biology ( Table 5 ).

Table 4. Comparison of H2O quality with regard to WHO guideline values

Mill Discharge Otomona Bridge Mid ADA WHO guideline value
As ( mg/l ) 3.94 0.126 0.045 0.01
Cadmium ( mg/l ) 0.24 0.007 0.001 0.003
Cu ( mg/l ) 536 13.13 4.65 2
Hg ( mg/l ) 0.003 0.003 0.003 0.006
Se ( mg/l ) 0.294 0.002 0.002 0.01

The above comparison clearly demonstrates that the river H2O is rendered non-potable by the mine pollution. In fact, in 1997, a functionary of the local authorities warned local people against imbibing of the river H2O and gave it a “D” public health evaluation.

Table 5. Comparison of H2O quality with regard to toxicity

Mill Discharge Otomona Bridge Mid ADA Toxic degree Beginning
As ( mg/l ) 3.94 0.126 0.045 1.85 Tisler and Zagorc-Konean ( 2003 )
Cadmium ( mg/l ) 0.24 0.007 0.001 0.01 Mallett et Al. ( 1992 )
Cu ( mg/l ) 536 13.13 4.65 0.015 Tisler and Zagorc-Korean ( 2003 )
Hg ( mg/l ) 0.003 0.003 0.003 0.000026 Canadian Water Quality Guideline
Se ( mg/l ) 0.294 0.002 0.002 0.002 Lemly ( 1992 )

Therefore, it can be seen from above that apart from quicksilver the concentrations of heavy metals at the factory discharge location are higher than the aquatic toxic degrees. Particularly for Cu, at all locations, the measured value is higher than the toxic degree. Locals have reported disappearing of many species of fish from the river. A fact-finding study by the New York Times has stated the river to be virtually barren of any fish.

Acid Mine Drainage

Beginning of Acid Mine Drainage

In the late phases of the formation procedure of the Grasberg ore, native sulfur was deposited in fool's gold venas. When oxidization takes topographic point in deposited shadowings of the ore, acidic conditions can bit by bit develop when Cu sulfide minerals are present. Under acerb conditions, metals in the ore may be mobilized. This acerb H2O bearing heavy metals, if non decently treated, may do irreversible pollution of groundwater. In 1993, it was reported for the first clip that sedimentation sites in Grasberg contained AMD. Different types of Cu sulfide found in the ore can be illustrated by a sample. Taken from the cardinal stockwork zone of the Grasberg ore, copper pyrites ( brasslike yellow-orange ), bornite ( dark blue-purple ), and covellite ( violet or light blue ) can be seen from the specimen. ( FCX 2004 ) . The mine waste incorporating these sulfide-bearing minerals, particularly chalcopyrite and bornite, can exercise important environmental impacts on the part.

Reference

  1. Brunskill, G. J., Zagorski's, I., Pfitzner, J., and Ellison, J. 2004. Sediment and hint element depositional history from the Ajkwa River estuarine Rhizophora mangles of Irian Jaya ( West Papua ), Indonesia. Continental Shelf Research 24: 2535-2551
  2. Bryce, R. 2005a. Freeport at Grasberg: ‘Devastated the river system '. News, The Austin Chronicle September 23, 2005. Uniform resource locator: [ hypertext transfer protocol: //www.austinchronicle.com/gyrobase/Issue/story? oid=oid % 3A292540. [ consulted 29 Jan 2010 ] .
  3. Bryce, R. 2005b. Written in Stone. News, The Austin Chronicle September 23, 2005. Uniform resource locator: hypertext transfer protocol: //www.austinchronicle.com/gyrobase/Issue/story? oid=oid % 3A292538. [ consulted 29 Jan 2010 ] .
  4. Chatterjee, P. 1996. A Cu mine of decease or misplaced incrimination? Inter Press Service ( February ). Cited in Kennedy, D., Chatterjee, P., and Moody, R. Risky concern the Grasberg gold mine, 16. Berkeley: Undertaking Underground, 1998
  5. Earth Observatory ( EO ). NASA. Grasberg Mine, Indonesia. Posted August 1, 2005. Uniform resource locator: hypertext transfer protocol: //earthobservatory.nasa.gov/IOTD/view.php? id=5718. [ consulted 5 February 2010 ]
  6. Freeport-McMoran Copper & A; Gold ( FCX ). 2004. How stone comes to life: step-by-step through the excavation procedure. hypertext transfer protocol: //www.fcx.com/envir/wtsd/2004/copper.htm. [ consulted 29 Jan 2010 ]
  7. Freeport McMoran Copper & A; Gold Inc. 2008. Core Assets, 2008 Annual Report Phoenix: Freeport McMoran Copper & A; Gold Inc.URL: hypertext transfer protocol: //www.fcx.com/ir/AR/2008/FCX_AR_2008.pdf [ consulted 01 Feb 2010 ]
  8. Freeport McMoran Copper & A; Gold Inc. 2009. Employee engagement Uniform resource locator: hypertext transfer protocol: //www.fcx.com/envir/emply_engag.htm [ consulted 01 Feb 2010 ]
  9. Freeport McMoran Copper & A ; Gold Inc. 2009. Economic Development URL: hypertext transfer protocol: //www.fcx.com/envir/eco_dev.htm # casestudy1 [ consulted 01 Feb 2010 ]
  10. International Institute for Environment and Development ( IIED ) 2002. Mining for the Future Appendix J: Grasberg Riverine Disposal Case Study
  11. Friehauf, K. C. 2002. Grasberg Mine Area, Indonesian research and travels, “Research”. hypertext transfer protocol: //faculty.kutztown.edu/friehauf/indonesia/grasberg.html. [ consulted 29 Jan 2010 ] .
  12. Friends of the Earth Netherlands ( Milieudefensie ) 2009. Mining Matters. Unacceptable metal excavation in developing states and the duties of companies in the Netherlands Amsterdam: Friends of the Earth Netherlands
  13. Golder Associates. 1994. Shadowings and River Management Plan Options Executive Summary, Submitted by Golder Associates to PT Freeport Indonesia, November 1994
  14. Hills, J., and Welford, R. 2006. Case Study: Auditing for Human Rights: Freeport-McMoRan Copper and Gold in Papua. Corporate Social Responsibility and Environmental Management 13: 108 - 114.
  15. International Institute for Environment and Development ( IIED ) and the World Business Council for Sustainable Development ( WBCSD ). 2002. Mining for the hereafter Appendix J: Grasberg riverine disposal instance survey. England: IIED and WBCSD
  16. International Institute for Environment and Development ( IIED ). 2002. Mining for the Future. England: IIED.
  17. International Mining ( IM ). 2009. The route to Grasberg. Great mines—Grasberg. International Mining 2009 ( Sep ) : 56-61.
  18. Kennedy, D., Chatterjee, P., and Moody, R. 1998. Hazardous concern the Grasberg gold mine, 16. Berkeley: Undertaking Underground
  19. Lemly, A. D. 1992. Guidelines for measuring Selenium information from aquatic monitoring and assessment services. Environmental Monitoring and Assessment 28: 83-100
  20. Mallett, M.J., Vine, S., Murgatroyd, C., Whitehouse, P., Jerman, E., Ashby-Crane, R.E., Fleming, R., Wilson, K. and Sims, I. 1992. Toxicity of common pollutants to freshwater life. A reappraisal of the effects of ammonium hydroxide, arsenic, Cd, Cr, Cu, nitrile, Ni, phenol, and Zn on autochthonal species. Bristol: National River Authority R & A ; D study Note 82.
  21. Mealey, G. A., 1996. Grasberg. Los Angeles: Freeport McMoRan Copper and Gold Inc
  22. McGinley, M. ( Topic Editor ); United Nations Environment Programme-World Conservation Monitoring Centre ( Content Partner ). 2008. `` Lorentz National Park, Indonesia. '' In Encyclopedia of Earth. Eds. Cutler J. Cleveland ( Washington, D.C.: Environmental Information Coalition, National Council for Science and the Environment ). [ First published in the Encyclopedia of Earth February 11, 2008; Last revised November 21, 2008; Retrieved February 5, 2010 ]. Uniform resource locator: hypertext transfer protocol: //www.eoearth.org/article/Lorentz_National_Park, _Indonesia. [ consulted 5 February 2010 ] .
  23. National Aeronautics and Space Administration ( NASA ). 2003. Visible Earth a catalog of NASA images and lives of our place planet. Uniform resource locator: hypertext transfer protocol: //veimages.gsfc.nasa.gov//16923/landsat_carstenz_29may03_28.5m.jpg [ consulted 5th February 2010 ]
  24. Ortman, D.E., and Subra, W. 2000. Review of Freeport Audit
  25. Perlez, J., and Bonner, R. 2005. Below a mountain of wealth a river of waste. New York Times ( New York ), December 27.
  26. Tisler, T., and Zagros-Koncan, J., 2003. Aquatic toxicity of selected chemicals as a
  27. basic standard for environmental categorization. Arh Hig Rada Tokiskol 54: 207-213
  28. The Council on Ethics ( TCE ). 2008. To the Ministry of Finance - Recommendation of 15 February 2008. hypertext transfer protocol: //www.minesandcommunities.org/article.php? a=8809. [ consulted Jan 29 2010 ] .
  29. Watson, M. 1999. External Environmental Audit, PT Freeport Indonesia operations
  30. Irian Jaya, Indonesia. Steamboat Springs, CO, US.
  31. Whitmore, A. 2006. The emperor's new apparel: Sustainable excavation? Journal of Cleaner Production 14: 309 - 314. ( beginning URL ) Galya
  32. Wohl, E. 2006. Human impacts on mountain watercourses. Geomorphology 79: 217 - 248.
  33. World Health Organisation ( WHO ). 2008. Guidelines for imbibing H2O quality.

Remember. This is just a sample.
You can get your custom paper from our expert writers

get custom paper

Cite this page

About metals and minerals. (2017, Jul 06). Retrieved from https://phdessay.com/about-metals-and-minerals/

Not Finding What You Need?

Search for essay samples now

We use cookies to give you the best experience possible. By continuing we’ll assume you’re on board with our cookie policy

Your Deadline is Too Short?  Let Professional Writer Help You

Get Help From Writers